MicroRNAs that respond to histone deacetylase inhibitor SAHA and p53 in HCT116 human colon carcinoma cells.
نویسندگان
چکیده
MicroRNAs (miRNAs) are important post-transcriptional regulators involved in many biological processes. We investigated the expression profiles of miRNAs affected by the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), and p53 in the human colon cancer cell line, HCT116 (wt-p53) and its derivative, HCT116 (null-p53). In a microarray assay, 144 of 275 human miRNAs showed several-fold changes in transcription. Most of these miRNAs were strongly affected by SAHA, and their expression profiles varied depending on the presence of p53. Thirty-one miRNAs showing the greatest expression changes were selected for target prediction, and genes related to apoptosis (102), cell cycle (38), and differentiation (102) were predicted. Each miRNA had many target genes, and several genes also were targeted by many miRNAs. Putative p53 upstream binding sites for the miRNAs were determined, and most sites scored >85%, suggesting a high probability of binding. In conclusion, we identified several miRNAs whose expression was affected by both SAHA and p53. Many of the miRNAs showed dramatic changes and were predicted to target many mRNAs. Further studies will be needed to verify these predictions.
منابع مشابه
Pathway for Antitumor Effects Induction of Polyploidy by Histone Deacetylase Inhibitor: A
Histone deacetylase (HDAC) inhibitors can induce various transformed cells to undergo growth arrest and/or death. Suberoylanilide hydroxamic acid (SAHA) is an HDAC inhibitor which is in phase I/II clinical trials and has shown antitumor activity in hematologic and solid tumors at doses well tolerated by patients. HDAC is the target for SAHA, but the mechanisms of the consequent induced death of...
متن کاملInduction of polyploidy by histone deacetylase inhibitor: a pathway for antitumor effects.
Histone deacetylase (HDAC) inhibitors can induce various transformed cells to undergo growth arrest and/or death. Suberoylanilide hydroxamic acid (SAHA) is an HDAC inhibitor which is in phase I/II clinical trials and has shown antitumor activity in hematologic and solid tumors at doses well tolerated by patients. HDAC is the target for SAHA, but the mechanisms of the consequent induced death of...
متن کاملEffects of Trichostatin A on the Histone Deacetylases (HDACs), Intrinsic Apoptotic Pathway, p21/Waf1/Cip1, and p53 in Human Neuroblastoma, Glioblastoma, Hepatocellular Carcinoma, and Colon Cancer Cell Lines
Background: The aberrant and altered patterns of gene expression play an important role in the biology of cancer and tumorigenesis. DNA methylation and histone deacetylation are the most studied epigenetic mechanisms. Histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA) and trichostatin A (TSA) are a group of anticancer compounds for the treatment of solid and hematological canc...
متن کاملInduction of a less aggressive phenotype in human colon carcinoma HCT116 cells by chronic exposure to HDAC inhibitor SAHA.
Histone deacetylase inhibitors (HDACis) are anticancer molecules that epigenetically modulate cell functions. Chronic exposure of HCT116 colon cancer cells to SAHA has been investigated for a better understanding of resistance mechanisms but, surprisingly, a less aggressive tumor phenotype both in vitro and in vivo was obtained after exposure to increasing concentrations of SAHA. Indeed, HCT116...
متن کاملInhibitors of histone deacetylases suppress cisplatin-induced p53 activation and apoptosis in renal tubular cells.
Inhibitors of histone deacetylases, including suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA), are emerging anticancer agents. In the current study, we examined the cytoprotective effects of these agents. Cisplatin induced 40-50% apoptosis in rat kidney proximal tubular cells in 18 h, which was suppressed to 20-30% by 1-5 microM SAHA or 0.1 microM TSA. Consistently, SAHA partial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of oncology
دوره 35 6 شماره
صفحات -
تاریخ انتشار 2009